Meshing & Geometry

  • Structured finite difference/control volume
  • Multi-Block Gridding with:Nested blocksLinked blocks
  • Fractional areas/volumes (FAVORTM) for efficient & accurate geometry definition
  • Solids Modeler
  • Imports most CAD files
  • Grid & geometry independence

Flow Type Options

  • Internal, external & free-surface flows
  • Three, two & one dimensional problems
  • Transient flows
  • Cartesian or cylindrical coordinates
  • Inviscid, viscous, laminar & turbulent flows
  • Non-inertial reference frames
  • Multiple scalar species
  • Two-phase flows
  • Heat transfer with phase change
  • Saturated & unsaturated porous media

Thermal Modeling Options

  • Natural convection
  • Forced convection
  • Conduction in fluid & solid
  • Fluid-solid heat transferConductionSpecified heat fluxSpecified solid temperature
  • Heat transfer to voids from fluid/obstacles
  • Distributed energy sources/sinks in fluids or solids
  • Radiation by emissivity
  • Viscous heating
  • Temperature-dependent material properties

Numerical Modeling Options

  • Volume-of-Fluid (VOF) method for fluid interfaces-TruVOF
  • First, second or third order advection
  • Sharp fluid interface tracking
  • Implicit & explicit modeling options
  • Point, line relaxation & GMRES pressure solvers
  • User-defined variables, subroutines & output
  • Utilities for runtime interaction during execution

Flow Definition Options

General initial and boundary conditionsSymmetryRigid wallsContinuativePeriodicSpecified pressureSpecified velocityOutflowGrid overlayHydrostaticCustomVolume flow rateLinear and non-linear surface waves

Restart previous simulationContinuation of a simulationOverlay boundary conditions from a previous simulation Change meshAdd, delete or change model

parameters

Fluid Modeling Options

  • One incompressible fluid – confined or with free surfaces
  • Two incompressible fluids – miscible or with sharp interfaces
  • Compressible fluid – subsonic, transonic, supersonic
  • Stratified fluid
  • Acoustic phenomena
  • Mass particles with variable density or diameter

Physical Modeling Options

  • Multi-species scour deposition & bedload transport
  • Cavitation
  • Phase change (liquid-vapor, liquid-solid & liquid-gas)
  • Surface tension
  • Thermocapillary effects
  • Wall adhesion
  • Wall roughness
  • Vapor & gas bubbles
  • Solidification & melting (heat-of-transformation table)
  • Mass/momentum/energy sources
  • Shear, density & temperature-dependent viscosity
  • Thixotropic viscosity
  • Elastic stress
  • Electric field
  • Elastic membranes & walls
  • Evaporation residue
  • Dielectric phenomena
  • Electro-osmosis
  • Electrostatic particles
  • Electro-mechanical effects
  • Joule heating
  • Air entrainment
  • Molecular & turbulent diffusion
  • Temperature-dependent material properties

Data Processing Options

  • Automatic or custom graph requests
  • Interactive OpenGL-based graphics (grid overlay optional)
  • Color or B/W vector, contour, 3D surface & particle plots
  • Moving history & probe data
  • Force & moment computations
  • Animation output
  • PostScript, JPEG & Bitmap output
  • Streamlines
  • STL geometry viewer

Metal Casting Models Turbulence Models Chemistry Models

  • Solidification & melting
  • Solidification shrinkage with interdendritic feeding
  • Microporosity
  • Binary segregation during solidification
  • Solid-fraction dependent latent heat release
  • Thermal die cycling
  • Thermal stress & deformations
  • Defect tracking
  • Cavitation potential
  • Lost-foam casting
  • Semi-solid material
  • Moisture in sand & molds
  • Core gas generation
  • Back pressure & vents
  • Shot sleeves
  • Air Entrainment
  • Temperature-dependent material properties

Two-Phase & Two-Component Models

  • Liquid/liquid & gas/liquid interfaces
  • Two-fluid mixtures
  • One compressible fluid with a dispersed incompressible component
  • Two-component drift-flux
  • Two-component, vapor/non-condensible gases
  • Phase transformations for gas-liquid & liquid-solid
  • Adiabatic bubbles
  • Bubbles with phase change
  • Continuum fluid with discrete particles
  • Scalar transport

Discrete Particle Models

  • Massless marker particles
  • Mass particles of variable size/mass
  • Linear & quadratic fluid-dynamic drag
  • Monte-Carlo diffusion
  • Particle-Fluid momentum coupling
  • Coefficient of restitution or sticky particles
  • Point or volumetric particle sources
  • Charged particles
  • Probe particles
  • Prandtl mixing length
  • One-equation transport
  • Two-equation κ-ε model
  • RNG κ-ε model
  • Large eddy simulation

Porous Media Models

  • Variable porosity
  • Directional porosity
  • General flow losses (linear & quadratic)
  • Capillary pressure
  • Unsaturated flow
  • Heat transfer in porous media
  • Porous baffles & solid objects with linear & quadratic flow losses

Advanced Physical Models

  • General Moving Object model with 6 Degrees of Freedom–user specified motion or fully-coupled with fluid flow
  • Rotating/spinning objects
  • Collision model
  • Moving object assemblies
  • Tethered moving objects (springs & ropes)
  • Flexing membranes and walls

Shallow Flow Models

  • Shallow water model
  • General topography
  • Wetting & drying
  • Wind shear
  • Ground roughness effects

User Conveniences

  • Mesh & initial condition generators
  • Time-step control for accuracy & stability
  • Automatic limited compressibility
  • Convergence control
  • Mentor help to optimize efficiency
  • Change solution parameters as solver runs
  • Manage & launch multiple simulations
  • Automatic termination based on user-defined criteria
  • Stiff equation solver for chemical rate equations
  • Stationary or advected species

Coupling with Other Programs

  • Geometry input from Stereolithography (STL) files – binary or ASCII
  • Geometry input from ANSYS or I’DEAS tetrahedral data
  • Direct interfaces with EnSight, FIELDVIEW & Tecplot visualization programs
  • PLOT3D output
  • Neutral file output
  • Extensive customization possibilities
  • Topographic data

Supported Platforms

Processors
  • x86/x86-32 (Intel Pentium/Xeon, AMD Athlon/Opteron)
  • x86/x86-64 (Intel Pentium/Xeon/Core, AMD Athlon/Opteron)

Operating Systems

  • 32-bit Windows XP/Vista
  • 64-bit Windows XP/Vista & Server 2003/2008
  • 32-bit Redhat Enterprise 3.0+
  • 64-bit Redhat Enterprise 3.0+ & SUSE Enterprise 9.0+

Hardware Requirements

The hardware requirements to run FLOW-3D depend on the number of physical models active during the simulation. An iso-thermal, inviscid simulation requires roughly 1GB of memory for 2.5 million computational cells in double precision. Activating turbulence & heat transfer increases the memory requirements by about 30%. A single precision solver reduces the memory requirements by roughly 40%.

FLOW-3D & TruVOF are registered trademarks in the USA and other countries.